乒乓世界杯_u20世界杯最新战况 - chhtzx.com

二次函数

6308

f

(

x

)

=

a

x

2

|

a

=

{

0.1

,

0.3

,

1

,

3

}

{\displaystyle f(x)=ax^{2}|_{a=\{0.1,0.3,1,3\}}}

f

(

x

)

=

x

2

+

b

x

|

b

=

{

1

,

2

,

3

,

4

}

{\displaystyle f(x)=x^{2}+bx|_{b=\{1,2,3,4\}}}

f

(

x

)

=

x

2

+

b

x

|

b

=

{

1

,

2

,

3

,

4

}

{\displaystyle f(x)=x^{2}+bx|_{b=\{-1,-2,-3,-4\}}}

系数

a

{\displaystyle a}

控制了二次函数从顶点的增长(或下降)速度,即二次函数开口方向和大小。

|

a

|

{\displaystyle |a|}

越大,开口越小,函数就增长得越快。

系数

b

{\displaystyle b}

a

{\displaystyle a}

控制了抛物线的对称轴(以及顶点的

x

{\displaystyle x}

坐标)。

系数

b

{\displaystyle b}

控制了抛物线穿过

y

{\displaystyle y}

轴时的倾斜度(导数)。

系数

c

{\displaystyle c}

控制了抛物线最低点或最高点的高度,它是抛物线与

y

{\displaystyle y}

轴的交点。

函数

图像

函数变化

对称轴

开口方向

最大(小)值

y

=

a

x

2

{\displaystyle y=ax^{2}}

a

>

0

{\displaystyle a>0}

x

>

0

{\displaystyle x>0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的增大而增大;当

x

<

0

{\displaystyle x<0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的减小而增大

y

{\displaystyle y}

轴或

x

=

0

{\displaystyle x=0}

向上

0

{\displaystyle 0}

y

=

a

x

2

{\displaystyle y=ax^{2}}

a

<

0

{\displaystyle a<0}

x

>

0

{\displaystyle x>0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的增大而减小;当

x

<

0

{\displaystyle x<0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的减小而减小

y

{\displaystyle y}

轴或

x

=

0

{\displaystyle x=0}

向下

0

{\displaystyle 0}

y

=

a

x

2

+

c

{\displaystyle y=ax^{2}+c}

a

>

0

{\displaystyle a>0}

x

>

0

{\displaystyle x>0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的增大而增大;当

x

<

0

{\displaystyle x<0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的减小而增大

y

{\displaystyle y}

轴或

x

=

0

{\displaystyle x=0}

向上

c

{\displaystyle c}

y

=

a

x

2

+

c

{\displaystyle y=ax^{2}+c}

a

<

0

{\displaystyle a<0}

x

>

0

{\displaystyle x>0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的增大而减小;当

x

<

0

{\displaystyle x<0}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的减小而减小

y

{\displaystyle y}

轴或

x

=

0

{\displaystyle x=0}

向下

c

{\displaystyle c}

y

=

a

x

2

+

b

x

+

c

{\displaystyle y=ax^{2}+bx+c}

a

>

0

{\displaystyle a>0}

x

>

b

2

a

{\displaystyle x>-{\frac {b}{2a}}}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的增大而增大;当

x

<

b

2

a

{\displaystyle x<-{\frac {b}{2a}}}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的减小而增大

x

=

b

2

a

{\displaystyle x=-{\frac {b}{2a}}}

向上

b

2

4

a

c

4

a

{\displaystyle -{\frac {b^{2}-4ac}{4a}}}

y

=

a

x

2

+

b

x

+

c

{\displaystyle y=ax^{2}+bx+c}

a

<

0

{\displaystyle a<0}

x

>

b

2

a

{\displaystyle x>-{\frac {b}{2a}}}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的增大而减小;当

x

<

b

2

a

{\displaystyle x<-{\frac {b}{2a}}}

时,

y

{\displaystyle y}

x

{\displaystyle x}

的减小而减小

x

=

b

2

a

{\displaystyle x=-{\frac {b}{2a}}}

向下

b

2

4

a

c

4

a

{\displaystyle -{\frac {b^{2}-4ac}{4a}}}

x 截距

编辑

当函数与

x

{\displaystyle x}

轴有两个交点时,设这两个交点分别为

A

(

x

1

,

0

)

,

B

(

x

2

,

0

)

{\displaystyle A(x_{1},0),\,B(x_{2},0)}

,由根与系数的关系得出[d]:

x

1

+

x

2

=

b

a

{\displaystyle x_{1}+x_{2}=-{\frac {b}{a}}}

x

1

x

2

=

c

a

{\displaystyle x_{1}x_{2}={\frac {c}{a}}}

A

B

=

|

x

2

x

1

|

=

|

(

x

2

x

1

)

2

|

=

|

(

x

1

+

x

2

)

2

4

x

1

x

2

|

=

|

(

b

a

)

2

4

c

a

|

=

|

b

2

a

2

4

a

c

a

2

|

=

|

b

2

4

a

c

a

2

|

=

b

2

4

a

c

|

a

|

Δ

|

a

|

{\displaystyle {\begin{aligned}\therefore AB&=|x_{2}-x_{1}|\\&=\left|{\sqrt {(x_{2}-x_{1})^{2}}}\right|\\&=\left|{\sqrt {(x_{1}+x_{2})^{2}-4x_{1}x_{2}}}\right|\\&=\left|{\sqrt {\left(-{\frac {b}{a}}\right)^{2}-{\frac {4c}{a}}}}\right|\\&=\left|{\sqrt {{\frac {b^{2}}{a^{2}}}-{\frac {4ac}{a^{2}}}}}\right|\\&=\left|{\sqrt {\frac {b^{2}-4ac}{a^{2}}}}\right|\\&={\frac {\sqrt {b^{2}-4ac}}{|a|}}\ \ \ \ {\text{或}}\ \ \ \ {\frac {\sqrt {\Delta }}{|a|}}\end{aligned}}}

顶点

编辑

抛物线的顶点是它转弯的地方,也称为驻点。如果二次函数是标准形式,则顶点为

(

h

,

k

)

{\displaystyle (h,k)\,\!}

。用配方法,可以把一般形式

f

(

x

)

=

a

x

2

+

b

x

+

c

{\displaystyle f(x)=ax^{2}+bx+c\,\!}

化为:

f

(

x

)

=

a

(

x

+

b

2

a

)

2

+

4

a

c

b

2

4

a

{\displaystyle f(x)=a\left(x+{\frac {b}{2a}}\right)^{2}+{\frac {4ac-b^{2}}{4a}}}

[2][3]

因此在一般形式中,抛物线的顶点是:

(

b

2

a

,

Δ

4

a

)

{\displaystyle \left(-{\frac {b}{2a}},-{\frac {\Delta }{4a}}\right)}

如果二次函数是因子形式

f

(

x

)

=

a

(

x

r

1

)

(

x

r

2

)

{\displaystyle f(x)=a(x-r_{1})(x-r_{2})\,\!}

,则两个根的平均数

r

1

+

r

2

2

{\displaystyle {\frac {r_{1}+r_{2}}{2}}\,\!}

就是顶点的

x

{\displaystyle x}

坐标,因此顶点位于

(

r

1

+

r

2

2

,

f

(

r

1

+

r

2

2

)

)

{\displaystyle \left({\frac {r_{1}+r_{2}}{2}},f({\frac {r_{1}+r_{2}}{2}})\right)\!}

a

<

0

{\displaystyle a<0\,\!}

时,顶点也是最大值;

a

>

0

{\displaystyle a>0\,\!}

时,则是最小值。

经过顶点的竖直线

x

=

h

=

b

2

a

{\displaystyle x=h=-{\frac {b}{2a}}}

又称为抛物线的对称轴。

最大值和最小值

编辑

導數法

编辑

函数的最大值和最小值总是在驻点(又称临界点,稳定点)取得。以下的方法是用导数法来推导相同的事实,这种方法的好处是适用于更一般的函数。

设有函数

f

(

x

)

=

a

x

2

+

b

x

+

c

{\displaystyle f(x)=ax^{2}+bx+c\,\!}

,寻找它的極值时,我们必须先求出它的导数:

f

(

x

)

=

a

x

2

+

b

x

+

c

f

(

x

)

=

2

a

x

+

b

{\displaystyle f(x)=ax^{2}+bx+c\Leftrightarrow \,\!f'(x)=2ax+b\,\!}

然后,求出

f

(

x

)

{\displaystyle f'(x)\,\!}

的根:

2

a

x

+

b

=

0

2

a

x

=

b

x

=

b

2

a

{\displaystyle 2ax+b=0\Rightarrow \,\!2ax=-b\Rightarrow \,\!x=-{\frac {b}{2a}}}

因此,

b

2

a

{\displaystyle -{\frac {b}{2a}}}

f

(

x

)

{\displaystyle f(x)\,\!}

x

{\displaystyle x\,\!}

值。现在,为了求出

y

{\displaystyle y\,\!}

,我们把

x

=

b

2

a

{\displaystyle x=-{\frac {b}{2a}}}

代入

f

(

x

)

{\displaystyle f(x)\,\!}

y

=

a

(

b

2

a

)

2

+

b

(

b

2

a

)

+

c

y

=

a

b

2

4

a

2

b

2

2

a

+

c

y

=

b

2

4

a

b

2

2

a

+

c

y

=

b

2

2

b

2

+

4

a

c

4

a

y

=

b

2

+

4

a

c

4

a

y

=

(

b

2

4

a

c

)

4

a

y

=

Δ

4

a

{\displaystyle y=a\left(-{\frac {b}{2a}}\right)^{2}+b\left(-{\frac {b}{2a}}\right)+c\Rightarrow y={\frac {ab^{2}}{4a^{2}}}-{\frac {b^{2}}{2a}}+c\Rightarrow y={\frac {b^{2}}{4a}}-{\frac {b^{2}}{2a}}+c\Rightarrow y={\frac {b^{2}-2b^{2}+4ac}{4a}}\Rightarrow y={\frac {-b^{2}+4ac}{4a}}\Rightarrow y=-{\frac {(b^{2}-4ac)}{4a}}\Rightarrow y=-{\frac {\Delta }{4a}}}

所以,最大值或最小值的坐标为:

(

b

2

a

,

Δ

4

a

)

{\displaystyle \left(-{\frac {b}{2a}},-{\frac {\Delta }{4a}}\right)}

配方法

编辑

f

(

x

)

=

a

x

2

+

b

x

+

c

=

a

(

x

2

+

b

a

x

)

+

c

=

a

[

x

2

+

b

a

x

+

(

b

2

a

)

2

]

+

c

a

(

b

2

a

)

2

=

a

(

x

+

b

2

a

)

2

+

4

a

c

4

a

b

2

4

a

=

a

(

x

+

b

2

a

)

2

+

4

a

c

b

2

4

a

{\displaystyle {\begin{aligned}f(x)&=ax^{2}+bx+c\\&=a(x^{2}+{\frac {b}{a}}x)+c\\&=a\left[x^{2}+{\frac {b}{a}}x+({\frac {b}{2a}})^{2}\right]+c-a({\frac {b}{2a}})^{2}\\&=a(x+{\frac {b}{2a}})^{2}+{\frac {4ac}{4a}}-{\frac {b^{2}}{4a}}\\&=a(x+{\frac {b}{2a}})^{2}+{\frac {4ac-b^{2}}{4a}}\\\end{aligned}}}

由於實數的二次方皆大於等於0,因此當

x

=

b

2

a

{\displaystyle x=-{\frac {b}{2a}}}

時,

f

(

x

)

{\displaystyle f(x)}

有最大或最小值

4

a

c

b

2

4

a

{\displaystyle {\frac {4ac-b^{2}}{4a}}}